Early Experiences on using Triplet Networks for Histological Subtype Classification in Non-Small Cell Lung Cancer

Fatih Aksu¹

Fabrizia Gelardi^{1,2}

Arturo Chiti^{1,2} Paolo Soda^{3,4}

¹Department of Biomedical Sciences, Humanitas University, Milan, Italy

²IRCCS Humanitas Research Hospital, Milan, Italy

³Research Unit of Computer Systems and Bioinformatics, Campus Bio-Medico University of Rome, Rome, Italy

⁴Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden

Outline

- Introduction
- Background
- Method
- Experiments
- Findings
- Conclusion

Introduction

- Lung cancer is one of the leading cause of the cancer related deaths
- Accurate assessment of histotypes is essential for personalised treatment
- 85% of the lung cancer is Non-small cell lung cancer (NSCLC) with several histotypes;
 - Adenocarcinoma (AC)
 - Squamous cell carcinoma (SQC)
 - Large cell carcinoma (LCC)
- Pathological confirmation requires invasive tissue sampling

Source: Medical News Today [1]

Background

- Based on hand-crafted radiomic features
 - Ferreria et al. (2018) [2]
 - 100 features are selected with ReliefF among ~2000 radiomic features
 - Classified with Naïve Bayes, k-Nearest Neighbours
 - Liu et al. (2019) [3]
 - 247 features are selected among 1029
 - Classified with an SVM
- Based on deep features
 - Han et al. (2021) [4]
 - Compared pretrained VGG-16 with 10 different ML models used with radiomic features
 - Chaunzwa et al. (2021) [5]
 - Pretrained VGG-16 used as feature extractor for kNN, SVM and Random Forest
 - Compared with end-to-end VGG-16

Triplet Loss

$$Loss = \sum_{i=1}^{N} \left[\|f_i^a - f_i^p\|_2^2 - \|f_i^a - f_i^n\|_2^2 + \alpha \right]_+$$

Triplet Selection Methods

- TSM-1
 - Easy positives, hard negatives
 - Static difficulty
- TSM-2
 - Easy positives, hard negatives
 - Dynamic difficulty
- TSM-3
 - Easy positives, easy negatives
 - Dynamic difficulty

$$||f_i^a - f_i^p||_2^2 + \alpha < ||f_i^a - f_i^n||_2^2$$

Overall Framework

Experiments

- On a private dataset with;
 - 60 AC and 27 SQC patients
- 4 different architectures
 - ResNet-50, VGG-16, MobileNetV2, GoogleNet
- 3 different triplet selection methods
 - TSM-1, TSM-2, TSM-3
- 5 different numbers of triplets
 - 1, 2, 4, 8, 16
- 5 different numbers of neighbours
 - 1, 3, 5, 7, 9

Findings

Triplet vs Softmax

Model	Wins	Loss
ResNet-50	74 (30)	1 (0)
MobileNetV2	47 (25)	28 (0)
VGG-16	43 (12)	32 (1)
GoogLeNet	64 (18)	11 (0)

Numbers inside parantheses indicate the significant (p<0.1) wins/losses according to Wilcoxon signed rank test.

Conclusion

- Triplet loss is a viable option to be used instead of softmax loss
- GoogLeNet and ResNet-50 are more suitable backbone networks than MobileNetV2 and VGG-16
- Choosing easiest positive and hardest negative during the whole training is a more preferred method

Future Work

- Extend our dataset
- Investigate the class unbalance problem
- Explore more architectures and triplet selection methods
- Have a multimodal approach
 - PET scans and genomic data

References

- [1] A. Sandoiu, "New protein may help to catch lung cancer early," Medical News Today, https://www.medicalnewstoday.com/articles/321749 (accessed Jun. 17, 2023).
- [2] J. R. F. Junior et al., "Radiomics-based features for pattern recognition of lung cancer histopathology and metastases," Computer methods and programs in biomedicine, vol. 159, pp. 23–30, 2018.
- [3] J. Liu, et al., Multi-subtype classification model for non-small cell lung cancer based on radiomics: SLS model, Medical Physics 46 (7) (2019) 3091–3100.
- [4] Y. Han, et al., Histologic subtype classification of non-small cell lung cancer using PET/CT images, European journal of nuclear medicine and molecular imaging 48 (2) (2021) 350–360.
- [5] T. L. Chaunzwa, et al., Deep learning classification of lung cancer histology using CT images, Scientific reports 11 (2021).