

TOWARD A MULTIMODAL DEEP LEARNING APPROACH FOR HISTOLOGICAL SUBTYPE CLASSIFICATION IN NSCLC

FATIH AKSU, FABRIZIA GELARDI, ARTURO CHITI, PAOLO SODA

Contents

- Introduction
- Related Work
- Materials
- Pre-processing
- Network Architecture
- Results
- Conclusion

Introduction

- Lunger cancer is one of the most common and deadly malignancies worldwide
- 85% of all lung cancers are NSCLC, with LUAD and LUSC as the most common subtypes
- Differentiating between LUAD and LUSC is crucial for effective, personalized treatment strategies
- Currently, invasive methods remain gold standard, but it is not always feasible and can lead to clinical complications

Credit: Echelon Health

Introduction

- CNNs have shown exceptional performance in various domains including medical image analysis
- Multimodal deep learning combines multiple data types for a comprehensive understanding
- PET and CT offers complementary metabolic and anatomical information

Therefore, we introduce a novel intermediate fusion approach to classify histological subtypes of NSCLC using PET and CT

Related Work

- Majority of the studies, particularly those using deep learning, utilize only CT images, either with:
 - 2D slices [1,2], or
 - 3D scans [3,4]
- Studies that employ both PET and CT typically use:
 - Radiomics features [5,6], or
 - Early fusion techniques [6,7]
- Only one study [8] applies intermediate fusion to PET and CT images; however, it is implemented for segmentation

Materials

- Combination of 1 private and 2 public datasets
- Private dataset:
 - 423 patients from IRCCS Humanitas Research Hospital
- Public datasets from The Cancer Imaging Archive:
 - NSCLC Radiogenomics [9]: 193 patients
 - Lung-PET-CT-Dx [10]: 98 patients
- 714 patients in total with 546 LUAD and 168 LUSC cases

Pre-processing

- Photometric interpretation standardization
- Hounsfield unit conversion
- Standard uptake values conversion
- Uniform pixel spacing and slice thickness
- PET CT alignment
- Lung segmentation
- Clipping intensities
- Voxel value normalization

Network Architecture

Model	Accuracy	Sensitivity	Specificity	Gmean
Proposed Method	0.692	0.767	0.446	0.580
Unimodal (CT)	0.766	1.000	0.006	0.034
Unimodal (PET)	0.662	0.804	0.204	0.319
LUCY [3]	0.762	0.976	0.065	0.175
LUCY (Undersampled) [3]	0.775	0.976	0.119	0.295
DetectLC [4]	0.342	0.200	0.800	0.000

Conclusion

- We implemented a novel intermediate fusion approach
- Results show that our approach performs better than the unimodal approaches
- Using the complementary information from both PET and CT images improves the classification performance
- Eventually, it leads to a more personalized and effective treatment planning

References

- [1] T. L. Chaunzwa, A. Hosny, Y. Xu, A. Shafer, N. Diao, M. Lanuti, D. C. Christiani, R. H. Mak, H. Aerts, "Deep learning classification of lung cancer histology using CT images," Scientific reports, vol. 11, 2021.
- [2] F. Aksu, F. Gelardi, A. Chiti, P. Soda, "Early Experiences on using Triplet Networks for Histological Subtype Classification in Non-Small Cell Lung Cancer," In 36th Int. Symp. on Computer-Based Medical Systems, pp. 832–837, 2023.
- [3] S. Tomassini, N. Falcionelli, G. Bruschi, A. Sbrollini, N. Marini, P. Sernani, M. Morettini, H. Müller, A. F. Dragoni, and L. Burattini, "On-cloud decision-support system for non-small cell lung cancer histology characterization from thorax computed tomography scans," Computerized Medical Imaging and Graphics, vol. 110, p. 102310, 2023.
- [4] K. M. Fathalla, S. M. Youssef, and N. Mohammed, "DETECT-LC: A3D deep learning and textural radiomics computational model for lung cancer staging and tumor phenotyping based on computed tomography volumes," Applied Sciences, vol. 12, no. 13, p. 6318, 2022.
- [5] M. Yan and W. Wang, "Development of a radiomics prediction model for histological type diagnosis in solitary pulmonary nodules: the combi-nation of CT and FDG PET," Frontiers in Oncology, vol. 10, p. 555514,2020.
- [6] Y. Han, Y. Ma, Z. Wu, F. Zhang, D. Zheng, X. Liu, L. Tao, Z. Liang, Z. Yang, X. Li et al., "Histologic subtype classification of non-small cell lung cancer using PET/CT images," European journal of nuclear medicine and molecular imaging, vol. 48, pp. 350–360, 2021.
- [7] H. Zhao, Y. Su, Z. Lyu, L. Tian, P. Xu, L. Lin, W. Han, and P. Fu, "Non-invasively discriminating the pathological subtypes of non-small cell lung cancer with pretreatment 18F-FDG PET/CT using deep learning," Academic Radiology, vol. 31, no. 1, pp. 35–45, 2024.
- [8] I. Ahmad, Y. Xia, H. Cui, and Z. U. Islam, "AATSN: Anatomy Aware Tumor Segmentation Network for PET-CT volumes and images using a lightweight fusion-attention mechanism," Computers in Biology and Medicine, vol. 157, p. 106748, 2023.
- [9] S. Bakr, O. Gevaert, S. Echegaray, K. Ayers, M. Zhou, M. Shafiq, H. Zheng, W. Zhang, A. Leung, M. Kadoch, J. Shrager, A. Quon, D. Rubin, S. Plevritis, and S. Napel, "Data for NSCLC Radiogenomics Collection (Version 4) [Data set]," 2017. [Online]. Available at https://www.cancerimagingarchive.net/collection/nsclc-radiogenomics/
- [10] P. Li, S. Wang, T. Li, J. Lu, Y. HuangFu, and D. Wang, "A Large-Scale CT and PET/CT Dataset for Lung Cancer Diagnosis [Data set]," 2020. [Online]. Available at https://www.cancerimagingarchive.net/collection/lung-pet-ct-dx/