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Introduction

• Lunger cancer is one of the most common and deadly 

malignancies worldwide

• 85% of all lung cancers are NSCLC, with LUAD and 

LUSC as the most common subtypes

• Differentiating between LUAD and LUSC is crucial for 

effective, personalized treatment strategies

• Currently, invasive methods remain gold standard, but 

it is not always feasible and can lead to clinical 

complications
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Introduction

• CNNs have shown exceptional performance in various 

domains including medical image analysis

• Multimodal deep learning combines multiple data 

types for a comprehensive understanding

• PET and CT offers complementary metabolic and 

anatomical information

Therefore, we introduce a novel intermediate fusion 

approach to classify histological subtypes of NSCLC 

using PET and CT 
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Related Work

• Majority of the studies, particularly those using deep learning, utilize only CT images, 

either with:

• 2D slices [1,2], or

• 3D scans [3,4]

• Studies that employ both PET and CT typically use:

• Radiomics features [5,6], or

• Early fusion techniques [6,7]

• Only one study [8] applies intermediate fusion to PET and CT images; however, it is 

implemented for segmentation
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Materials

• Combination of 1 private and 2 public datasets

• Private dataset:

• 423 patients from IRCCS Humanitas Research Hospital

• Public datasets from The Cancer Imaging Archive:

• NSCLC Radiogenomics [9]: 193 patients

• Lung-PET-CT-Dx [10]: 98 patients

• 714 patients in total with 546 LUAD and 168 LUSC cases
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Pre-processing

• Photometric interpretation standardization

• Hounsfield unit conversion 

• Standard uptake values conversion

• Uniform pixel spacing and slice thickness

• PET – CT alignment

• Lung segmentation

• Clipping intensities

• Voxel value normalization
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Network Architecture
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Basic Block
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Fusion Block
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Results
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Model Accuracy Sensitivity Specificity Gmean

Proposed Method 0.692 0.767 0.446 0.580

Unimodal (CT) 0.766 1.000 0.006 0.034

Unimodal (PET) 0.662 0.804 0.204 0.319

LUCY [3] 0.762 0.976 0.065 0.175

LUCY (Undersampled) [3] 0.775 0.976 0.119 0.295

DetectLC [4] 0.342 0.200 0.800 0.000



Conclusion

• We implemented a novel intermediate fusion approach

• Results show that our approach performs better than the unimodal 

approaches

• Using the complementary information from both PET and CT images improves 

the classification performance

• Eventually, it leads to a more personalized and effective treatment planning
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