

ENHANCING NSCLC HISTOLOGICAL SUBTYPE CLASSIFICATION: A FEDERATED LEARNING APPROACH USING TRIPLET LOSS

FATIH AKSU, ERMANNO CORDELLI, FABRIZIA GELARDI,
ARTURO CHITI, PAOLO SODA

Contents

- Introduction
- Training Pipeline
- Inference
- Results
- Conclusion

Introduction

- Lunger cancer is one of the most common and deadly malignancies worldwide
- 85% of all lung cancers are NSCLC, with ADC and SCC being the most common subtypes
- Differentiating between ADC and SCC is crucial for effective and personalized treatment planning
- Currently, invasive methods remain gold standard, but it is not always feasible and can lead to clinical complications

Credit: Echelon Health

Introduction

- CNNs have shown exceptional performance in various domains, including medical image analysis
- The power of analyzing vast amounts of data is crucial for Al's performance
- Limited data availability, particularly in the medical domain, poses significant challenges
- Federated Learning enables multiple models to extract insights from local data while maintaining privacy

Training Pipeline

Inference

Results

Model	Accuracy	AUROC	Sensitivity	Specificity	Gmean
*Triplet (Federated)	0.664	0.664	0.739	0.550	0.630
Softmax (Federated)	0.579	0.610	0.586	0.567	0.572
Triplet (Local)	0.664	0.654	0.793	0.468	0.604
Softmax (Local)	0.629	0.632	0.726	0.477	0.582
Chaunzwa et al. [1]	0.600	0.581	0.680	0.478	0.568

Conclusion

- Combining federated learning with triplet loss improves classification performance while protecting data privacy.
- Our method consistently outperformed alternatives, with triplet loss showing superior results in both federated and local training settings.
- Enhanced model accuracy can support more precise, personalized lung cancer treatment strategies.

Code available here:

For further discussion:

fatih.aksu@unicampus.it

References

[1] T. L. Chaunzwa, A. Hosny, Y. Xu, A. Shafer, N. Diao, M. Lanuti, D. C. Christiani, R. H. Mak, H. Aerts, "Deep learning classification of lung cancer histology using CT images," Scientific reports, vol. 11, 2021.